Seasonal Water Chemistry and Spectral Reflectance in Coastal Mangroves

David Lagomasino^{1,2,*}, Rene Price^{1,2}, Petya Campbell³ & Dean Whitman¹

¹FIU: Department of Earth and Environment, Miami, FL
 ² FIU: Southeast Environmental Research Center, Miami, FL
 ³NASA: GSFC, Code 614.4, Greenbelt, MD
 *dlagomas@fiu.edu

9th Annual INTECOL Conference June 5, 2012

Multi-Scaled Socio-Ecology of the Everglades FCE III Conceptual Framework

FCE III LTER Goals:

(1) *Water*: How do water management decisions interact with climate change to determine freshwater distribution?

⁽²⁾ *Carbon:* How does the balance of fresh and marine water supplies regulate C uptake, storage, and fluxes by influencing water residence time, nutrient availability, and salinity?

(3) *Legacies:* How does historic variability in the relative supply of fresh and marine water modify ecosystem sensitivity to further change?

(4) *Scenarios:* What are alternative socio-ecological futures for South Florida under contrasting climate change and water management scenarios?

Research Question

- Can water quality be estimated and monitored using remote sensing?
 - Provide spatial estimates of water quality across various mangrove communities and identify seasonal trends using electro-magnetic spectral signatures

Spoiler Alert

- Water chemistry estimated from leaf spectra
- Leaf-level and satellite-level data show comparable results

Everglades Overview

- Restoration
- Sea-level Rise
- Salt water Intrusion
- Rain \approx ET
 - ~60-80% during wet season (May-Oct)

Everglades-Shark River

SITE LAYOUT

- Red, black and white mangroves (tall)
- Bedrock groundwater
- Pore water at 85 cm and 20cm depth

HYDROLOGY/ METEOROLOGY

- Eddy-covariance tower (SRS6)
- SW/GW level

Everglades-Taylor River

Courtesy of Xavier Zapata

SITE LAYOUT

- Red mangroves (dwarf)
- Top of bedrock GW wells
- Pore water at 20cm depth

HYDROLOGY/METEOROLOGY

- Weather station (TsPh7)
- SW/GW level

Vegetation Reflectance

HEALTHY LEAF

www.missionscience.nasa.gov

- Based on vegetation structure
- Δ environment $\approx \Delta$ structure $\approx \Delta$ spectra
- Used to calculate spectral vegetation indices

Spectral Vegetation Indices (SVI)

- Band combinations based on various wavelengths of the measured EM spectra
- Related to changes in the chemical and structural features
- Maximize sensitivity & minimize noise

SVI used in study

- EVI
 - [Total Nitrogen]
- REIP slope
 - [Ca²⁺]
- RFf_r
 - [Cl⁻¹]
- RE3
 - [SO₄²⁻]
- D705/722
 - [Total Phosphorus]

Field to regional upscaling

 Site/local hydrology
 Upscaling
 Regional hydrology

 -Water quality
 -Water quality
 -Water quality

 -Water availability
 groundtruthing
 -Water availability

 -Field spectra
 groundtruthing
 -Satellite spectra

Results

- ∆ spectra attributed to seasonal variability in water chemistry
- > variability at SRS4

Significant correlations between SVIs and ion and nutrient concentrations

Satellite acquisitions

Satellite-Level Reflectance

- Decrease in NIR (band4) with increase in [Cl⁻]
- Strong correlations (p<0.05) with SRS 5&6 sites</p>

- Seasonal [Cl⁻] variations
 - Low [Cl⁻] in wet season
 - High [Cl⁻] in dry season
- Downstream gradient

Summary

- Leaf-level and satellite-level data show comparable results
- Seasonal spectral trends associated with changes in water chemistry

Future Directions

- Additional data to improve model
- Decadal changes through times
 - Landsat legacy (1970s-2000s)
- Use stressed conditions to better constrain satellite ET estimates
- Extrapolate to the Caribbean and elsewhere

Acknowledgements

- Drs. Rene Price, Petya Cambell, Dean Whitman, Assefa Melesse, Steven Oberbauer, & Fernando Miralles
- ASD inc.
 - Goetz Instrumentation Award (2011)
- FCE LTER
- NASA WaterSCAPES
- Everglades National Park
- USGS
- Estefania Sandoval, Pamela Sullivan, Danielle Ogurcak, Emanuelle Feliciano, Stephanie Long, Nicole Neira, & Rafael Travieso

Questions